Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2000 Dec;21(24):2589-98.
doi: 10.1016/s0142-9612(00)00126-5.

Application of chitosan-based polysaccharide biomaterials in cartilage tissue engineering: a review

Affiliations
Review

Application of chitosan-based polysaccharide biomaterials in cartilage tissue engineering: a review

J K Suh et al. Biomaterials. 2000 Dec.

Abstract

Once damaged, articular cartilage has very little capacity for spontaneous healing because of the avascular nature of the tissue. Although many repair techniques have been proposed over the past four decades, none has sucessfully regenerated long-lasting hyaline cartilage tissue to replace damaged cartilage. Tissue engineering approaches, such as transplantation of isolated chondrocytes, have recently demonstrated tremendous clinical potential for regeneration of hyaline-like cartilage tissue and treatment of chondral lesions. As such a new approach emerges, new important questions arise. One of such questions is: what kinds of biomaterials can be used with chondrocytes to tissue-engineer articular cartilage? The success of chondrocyte transplantation and/or the quality of neocartilage formation strongly depend on the specific cell-carrier material. The present article reviews some of those biomaterials, which have been suggested to promote chondrogenesis and to have potentials for tissue engineering of articular cartilage. A new biomaterial, a chitosan-based polysaccharide hydrogel, is also introduced and discussed in terms of the biocompatibility with chondrocytes.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources