Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2000;101(2):349-56.
doi: 10.1016/s0306-4522(00)00369-9.

Hormonal regulation of hippocampal spine synapse density involves subcortical mediation

Affiliations
Free article

Hormonal regulation of hippocampal spine synapse density involves subcortical mediation

C Leranth et al. Neuroscience. 2000.
Free article

Abstract

It is well established that estrogen has positive effects on the density of pyramidal cell spines in the hippocampal CA1 subfield. This study explored whether afferent connections of the hippocampus that come from estrogen-sensitive subcortical structures, including the septal complex, median raphe and supramammillary area, play a role in this estrogen-induced hippocampal synaptic plasticity. These particular subcortical structures have major influences on hippocampal activity, including theta rhythm and long-term potentiation. The latter also promotes the formation of new synapses. All of the rats were ovariectomized; the fimbria/fornix, which contains the majority of subcortical efferents to the hippocampus, was transected unilaterally in each, and half of the animals received estrogen replacement. Using unbiased electron microscopic stereological methods, the CA1 pyramidal cell spine synapse density was calculated. In the estrogen-treated rats, contralateral to the fimbria/fornix transection, the spine density of CA1 pyramidal cells increased dramatically, compared to the spine density values of both the ipsilateral and contralateral hippocampi of non-estrogen-treated animals and to that of the ipsilateral hippocampus of the estrogen replaced rats. These observations indicate that fimbria/fornix transection itself does not considerably influence CA1 area pyramidal cell spine density and, most importantly, that the estrogenic effect on hippocampal morphology, in addition to directly affecting the hippocampus, involves subcortical mediation.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources