Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2000 Nov 14;39(45):13625-32.
doi: 10.1021/bi001814v.

Mechanistic diversity in a metalloenzyme superfamily

Affiliations
Review

Mechanistic diversity in a metalloenzyme superfamily

R N Armstrong. Biochemistry. .

Abstract

It is now appreciated that the relationships of proteins, particularly enzymes, within a protein superfamily can be understood not only in terms of their sequence similarities and three-dimensional structures but also by chemical threads that relate their functional attributes. The mechanistic ties among superfamily members can often be traced to a common transition state for the rate-limiting step of the reactions being catalyzed. This paper presents an analysis of a metalloenzyme superfamily, the members of which catalyze a very diverse set of reactions with unrelated transition states but a more general common mechanistic imperative. The vicinal oxygen chelate (VOC) superfamily is composed of structurally related proteins with paired beta alpha beta beta beta motifs that provide a metal coordination environment with two or three open or readily accessible coordination sites to promote direct electrophilic participation of the metal ion in catalysis. The known types of reactions that are catalyzed include isomerizations (glyoxalase I), epimerizations (methylmalonyl-CoA epimerase), oxidative cleavage of C-C bonds (extradiol dioxygenase), and nucleophilic substitutions (fosfomycin resistance proteins). The remarkable access to mechanism space that is provided by the VOC superfamily appears to derive from a simple, pseudosymmetric structural fold that maximizes the catalytic versatility of the metal center.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources