Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2001;40(1):85-95.
doi: 10.1016/s0028-3908(00)00117-9.

Adenosine A(1) and A(3) receptors mediate inhibition of synaptic transmission in rat cortical neurons

Affiliations

Adenosine A(1) and A(3) receptors mediate inhibition of synaptic transmission in rat cortical neurons

A Brand et al. Neuropharmacology. 2001.

Abstract

Intracellular recordings were made in rat brain slice preparations containing pyramidal cells of the associative frontal cortex in order to characterize the action of selective adenosine A(1) and A(3) receptor ligands on synaptic neurotransmission. The selective A(1) receptor agonist N(6)-cyclopentyladenosine (CPA) inhibited concentration-dependently the excitatory postsynaptic potentials (PSPs) which were evoked by focal electrical stimulation. The CPA-mediated inhibition was blocked by 1, 3-dipropyl-8-cyclopentylxanthine (DPCPX), a highly A(1) receptor-selective antagonist. The A(3) receptor agonist N(6)-(3-iodobenzyl)-adenosine-5'-N-methylcarboxamide (IB-MECA) inhibited concentration-dependently the evoked PSPs while the A(1) receptors were blocked continuously by DPCPX. Under these conditions, the A(3) receptor antagonist 9-chloro-2-(2-furanyl)-5-[(phenylacetyl)amino]-1,2,4-triazolo[1, 5-c]quinazoline (MRS 1220) did not influence the PSPs but inhibited completely the effect of IB-MECA. The inhibitory effect of IB-MECA was unaffected by DPCPX. CPA additionally inhibited the PSPs when applied after IB-MECA. Pharmacological dissociation of the N-methyl-D-aspartate (NMDA) and non-NMDA receptor components of the PSPs showed that CPA as well as IB-MECA reduced both. We conclude that adenosine A(1) and A(3) receptors are present on cortical pyramidal cells and involved in the inhibition of excitatory neurotransmission. Our results indicate no interplay between the two receptor subtypes. The separate inhibition may become particularly evident in situations where there are high levels of endogenously released adenosine, as seen in hypoxia.

PubMed Disclaimer

Publication types

MeSH terms

Substances

LinkOut - more resources