Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2000 Nov;49(11):1761-5.
doi: 10.2337/diabetes.49.11.1761.

Acyl-CoA inhibition of hexokinase in rat and human skeletal muscle is a potential mechanism of lipid-induced insulin resistance

Affiliations

Acyl-CoA inhibition of hexokinase in rat and human skeletal muscle is a potential mechanism of lipid-induced insulin resistance

A L Thompson et al. Diabetes. 2000 Nov.

Abstract

There are strong correlations between impaired insulin-stimulated glucose metabolism and increased intramuscular lipid pools; however, the mechanism by which lipids interact with glucose metabolism is not completely understood. Long-chain acyl CoAs have been reported to allosterically inhibit liver glucokinase (hexokinase IV). The aim of the present study was to determine whether long-chain acyl CoAs inhibit hexokinase in rat and human skeletal muscle. At subsaturating glucose concentrations, 10 micromol/l of the three major long-chain acyl-CoA species in skeletal muscle, palmitoyl CoA (16:0), oleoyl CoA (18:1, n = 9), and linoleoyl CoA (18:2, n = 6), reduced hexokinase activity of rat skeletal muscle to 61 +/- 3, 66 +/- 7, and 57 +/- 5% of control activity (P < 0.005), respectively. The inhibition was concentration-dependent (P < 0.005) with 5 pmol/l producing near maximal inhibition. Human skeletal muscle hexokinase was also inhibited by long-chain acyl CoAs (5 pmol/l palmitoyl CoA decreased activity to 75 +/- 6% of control activity, P < 0.005). Inhibition of hexokinase in rat and human muscle by long-chain acyl CoAs was additive to the inhibition of hexokinase by glucose-6-phosphate (an allosteric inhibitor of hexokinase). This inhibition of skeletal muscle hexokinase by long-chain acyl CoA suggests that increases in intramuscular lipid metabolites could interact directly with insulin-mediated glucose metabolism in vivo by decreasing the rate of glucose phosphorylation and decreasing glucose-6-phosphate concentrations.

PubMed Disclaimer

Publication types

LinkOut - more resources