Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2000 Oct;49(10 Suppl 2):3-6.

Sulfonylurea sensitivity of adenosine triphosphate-sensitive potassium channels from beta cells and extrapancreatic tissues

Affiliations
  • PMID: 11078468
Review

Sulfonylurea sensitivity of adenosine triphosphate-sensitive potassium channels from beta cells and extrapancreatic tissues

F M Gribble et al. Metabolism. 2000 Oct.

Abstract

Sulfonylureas are widely used to stimulate insulin secretion in type 2 diabetic patients because they close adenosine triphosphate-sensitive potassium (K(ATP)) channels in the pancreatic beta-cell membrane. This action is mediated by binding of the drug to the sulfonylurea receptor (SUR1) subunit of the channel. K(ATP) channels are also present in a range of extrapancreatic tissues, but many of these contain an alternative type of SUR subunit (SUR2A in heart and SUR2B in smooth muscle). The sulfonylurea-sensitivity of K(ATP) channels containing the different types of SUR is variable: gliclazide and tolbutamide block the beta cell, but not the cardiac or smooth muscle types of K(ATP) channels with high affinity. Glibenclamide and glimepiride, on the other hand, block channels containing SUR1 and SUR2 with similar affinity. The reversibility of the different sulfonylureas also varies. Tolbutamide and gliclazide produce a reversible inhibition of Kir6.2/SUR1 and Kir6.2/SUR2 channels, whereas glibenclamide has a reversible effect on cardiac, but not beta-cell, K(ATP) channels. In this article, we summarize current knowledge of how sulfonylureas act on K(ATP) channels containing the different types of sulfonylurea receptor, and discuss the implications of these findings for the use of sulfonylureas in the treatment of diabetes mellitus.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources