Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2001 Mar 2;276(9):6695-702.
doi: 10.1074/jbc.M009404200. Epub 2000 Nov 14.

Core LXXLL motif sequences in CREB-binding protein, SRC1, and RIP140 define affinity and selectivity for steroid and retinoid receptors

Affiliations
Free article

Core LXXLL motif sequences in CREB-binding protein, SRC1, and RIP140 define affinity and selectivity for steroid and retinoid receptors

D M Heery et al. J Biol Chem. .
Free article

Abstract

An alpha-helical motif containing the sequence LXXLL is required for the ligand-dependent binding of transcriptional co-activators to nuclear receptors. By using a peptide inhibition assay, we have defined the minimal "core" LXXLL motif as an 8-amino acid sequence spanning positions -2 to +6 relative to the primary conserved leucine residue. In yeast two-hybrid assays, core LXXLL motif sequences derived from steroid receptor co-activator (SRC1), the 140-kDa receptor interacting protein (RIP140), and CREB-binding protein (CBP) displayed differences in selectivity and affinity for nuclear receptor ligand binding domains. Although core LXXLL motifs from SRC1 and RIP140 mediated strong interactions with steroid and retinoid receptors, three LXXLL motifs present in the global co-activator CBP were found to have very weak affinity for these proteins. Core motifs with high affinity for steroid and retinoid receptors were generally found to contain a hydrophobic residue at position -1 relative to the first conserved leucine and a nonhydrophobic residue at position +2. Our results indicate that variant residues in LXXLL core motifs influence the affinity and selectivity of co-activators for nuclear receptors.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources