Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2000 Dec;75(6):2528-35.
doi: 10.1046/j.1471-4159.2000.0752528.x.

Lipid alterations in transient forebrain ischemia: possible new mechanisms of CDP-choline neuroprotection

Affiliations

Lipid alterations in transient forebrain ischemia: possible new mechanisms of CDP-choline neuroprotection

A M Rao et al. J Neurochem. 2000 Dec.

Abstract

We have previously demonstrated that cytidine 5'-diphosphocholine (CDP-choline or citicoline) attenuated arachidonic acid (ArAc) release and provided significant protection for the vulnerable hippocampal CA(1) neurons of the cornu ammonis after transient forebrain ischemia of gerbil. ArAc is released by the activation of phospholipases and the alteration of phosphatidylcholine (PtdCho) synthesis. Released ArAc is metabolized by cyclooxygenases/lipoxygenases to form eicosanoids and reactive oxygen species (ROS). ROS contribute to neurotoxicity through generation of lipid peroxides and the cytotoxic byproducts 4-hydroxynonenal and acrolein. ArAc can also stimulate sphingomyelinase to produce ceramide, a potent pro-apoptotic agent. In the present study, we examined the changes and effect of CDP-choline on ceramide and phospholipids including PtdCho, phosphatidylethanolamine (PtdEtn), phosphatidylinositol (PtdIns), phosphatidylserine (PtdSer), sphingomyelin, and cardiolipin (an exclusive inner mitochondrial membrane lipid essential for electron transport) following ischemia/1-day reperfusion. Our studies indicated significant decreases in total PtdCho, PtdIns, PtdSer, sphingomyelin, and cardiolipin and loss of ArAc from PtdEtn in gerbil hippocampus after 10-min forebrain ischemia/1-day reperfusion. CDP-choline (500 mg/kg i.p. immediately after ischemia and at 3-h reperfusion) significantly restored the PtdCho, sphingomyelin, and cardiolipin levels as well as the ArAc content of PtdCho and PtdEtn but did not affect PtdIns and PtdSer. These data suggest multiple beneficial effects of CDP-choline: (1) stabilizing the cell membrane by restoring PtdCho and sphingomyelin (prominent components of outer cell membrane), (2) attenuating the release of ArAc and limiting its oxidative metabolism, and (3) restoring cardiolipin levels.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources