Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2000 Dec;295(3):1192-205.

S18616, a highly potent, spiroimidazoline agonist at alpha(2)-adrenoceptors: I. Receptor profile, antinociceptive and hypothermic actions in comparison with dexmedetomidine and clonidine

Affiliations
  • PMID: 11082457
Comparative Study

S18616, a highly potent, spiroimidazoline agonist at alpha(2)-adrenoceptors: I. Receptor profile, antinociceptive and hypothermic actions in comparison with dexmedetomidine and clonidine

M J Millan et al. J Pharmacol Exp Ther. 2000 Dec.

Abstract

S18616 ((S)-spiro[(1-oxa-2-amino-3-azacyclopent-2-ene)-4, 2'-(8'-chloro-1',2',3',4'-tetrahydronaphthalene)]) displayed high affinity at native rat alpha(2)-adrenoceptors (AR)s (pK(i), 9.8), native human (h)alpha(2A)-ARs (9.6), and cloned halpha(2A)- (9.5), halpha(2B)- (9.2), and halpha(2C)- (9.0) ARs. It showed 40-fold lower affinity for halpha(1A)-ARs (8.4) and >/=100-fold lower affinity for rat alpha(1)-ARs (7.1), halpha(1B)-ARs (7.7), halpha(1D)-ARs (7.6), imidazoline(1) (7.4), and imidazoline(2) (7.4) sites and >100-fold lower affinity for all other (>50) sites. At halpha(2A)-ARs, in guanosine-5'-O-(3-[(35)S]thio)triphosphate binding studies, S18616 was a potent (partial) agonist: log effective concentration (pEC(50)), 9.3/maximal effect, 51%. This observation was corroborated employing a halpha(2A)-Gi1alpha fusion protein/GTPase assay (9.0/40%) in which the actions of S18616 were blocked by pertussis toxin. Employing guanosine-5'-O-(3-[(35)S]thio)triphosphate binding assays, S18616 was also a partial agonist at halpha(2C)-ARs (8.2/63%) but a full agonist (8.4/124%) at halpha(2B)-ARs. At halpha(2A)-, halpha(2B)-, and halpha(2C)-ARs, the selective alpha(2)-AR antagonist, atipamezole, abolished the actions of S18616: pK(b) values of 9.1, 9. 1, and 9.4, respectively. As determined by depletion of membrane-bound [(3)H]phosphatidyl inositols, S18616 behaved as a (less potent) agonist (7.8/79%) at halpha(1A)-ARs, an action abolished by prazosin (pK(b), 8.9). Reflecting alpha(2)-AR agonist properties, S18616 potently (>/=1 microg/kg, s.c.) and dose dependently elicited hypothermia and antinociception (nine diverse models) in rodents. These actions were dose dependently inhibited by chemically diverse alpha(2)- versus alpha(1)-AR antagonists, atipamezole, idazoxan, RX821,002, and BRL44418 (a preferential alpha(2A)-AR ligand). In contrast, the actions of S18616 were unaffected by the alpha(1)-AR antagonists, ARC239 and prazosin (which preferentially block alpha(2B/2C)- versus alpha(2A)-ARs). Although the affinity of dexmedetomidine at alpha(2)-ARs was lower than S18616; it displayed a similar receptor and functional profile. Clonidine displayed lower efficacy than S18616, was substantially less potent, and had marked affinity for imidazoline(1) sites and alpha(1)-ARs. In conclusion, S18616 is a novel, selective, and highly potent agonist at alpha(2)-ARs.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources