Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2000 Nov 30;103(2):145-9.
doi: 10.1016/s0165-0270(00)00308-3.

The cost of an action potential

Affiliations

The cost of an action potential

G L Aiello et al. J Neurosci Methods. .

Abstract

Neuronal modules, or 'cell-assemblies', comprising millions of mutually interconnected cells have been postulated to form the basis of many functions of the brain, such as mood, sleep, hunger, vigilance, and more. Depending on the extent of the module, neurocommunication in cell-assemblies might exceed metabolic resources. A medium-size (10000 neurons) module would require at least 10 J per l of brain, based on a calculated cost of an isolated action potential (AP) of 10(11)-10(12) molecules of ATP per cm(2) of cell membrane, with an absolute minimum of 10(6) ATP at a node of Ranvier. The figure matches the cost of depolarizing the unmyelinated axon of the large monopolar cell in the blowfly retina. A circuit model of the cell membrane, based on abrupt changes of Na(+) and K(+) conductances, is used to emulate the AP and to assess the resulting ionic unbalance. The cost of an AP is equated to the metabolic energy necessary to fuel ATP-based pumps that restore intracellular K(+). The high metabolic demand of a cell-assembly suggests that less expensive means of neurocommunication may be involved, such as non-synaptic diffusion neurotransmission (NDN), which would comply with a proposed law of conservation of space and energy in the brain.

PubMed Disclaimer

Publication types

LinkOut - more resources