Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2000 Nov 15;29(10):1043-50.
doi: 10.1016/s0891-5849(00)00432-9.

The Saccharomyces cerevisiae Sln1p-Ssk1p two-component system mediates response to oxidative stress and in an oxidant-specific fashion

Affiliations
Free article

The Saccharomyces cerevisiae Sln1p-Ssk1p two-component system mediates response to oxidative stress and in an oxidant-specific fashion

K K Singh. Free Radic Biol Med. .
Free article

Abstract

Aerobic organisms experience oxidative stress due to generation of reactive oxygen species during normal aerobic metabolism. In addition, environmental gamma and UV radiation, as well as several chemicals also generate reactive oxygen species, which induce oxidative stress. Thus oxidative stress constitutes a major threat to organisms living in aerobic environments. Oxidative stress induces the expression of several genes in yeast Saccharomyces cerevisiae. However, the primary sensor(s) that trigger the response is unknown. This study demonstrates that primary sensors of osmotic stress, the Sln1p-Ssk1p two-component proteins, are involved in sensing oxidative stress specifically induced by hydrogen peroxide and diamide, but not by other oxidants used in the study. Wild type and sln1-ssk1 mutant were treated with hydrogen peroxide, diamide, menadione, UV, and gamma-radiation. Results show that sln1-ssk1 mutant is only sensitive to hydrogen peroxide and diamide but not to other oxidants. S. cerevisiae contains an additional cell surface osmosensor, Sho1p, that targets the osmotic signal to Hog1p. Data is presented that shows Sho1 and Hog1 proteins are also involved in signaling oxidant-specific cellular damage. Furthermore, it is demonstrated that expression of the mammalian homolog of Hog1p provides protection from oxidative stress induced by hydrogen peroxide. These results suggest that Sln1p-Ssk1p and Sho1p signal transduction pathways participate in oxidative stress response. However, this response to oxidative stress is limited to specific oxidants.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources