Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2000 Nov 1;60(21):5995-6000.

Activation of caspase-3 and c-Jun NH2-terminal kinase-1 signaling pathways in tamoxifen-induced apoptosis of human breast cancer cells

Affiliations
  • PMID: 11085519

Activation of caspase-3 and c-Jun NH2-terminal kinase-1 signaling pathways in tamoxifen-induced apoptosis of human breast cancer cells

S Mandlekar et al. Cancer Res. .

Abstract

Tamoxifen (TAM) is widely used in the treatment of breast cancer. The cytostatic effects of TAM have been attributed to the antagonism of estrogen receptor (ER) and inhibition of estrogen-dependent proliferative events. However, the mechanism by which TAM is also effective against certain ER-negative breast tumors remains to be elucidated. Here we report that TAM induced the activity of caspase-3-like proteases in ER-negative breast cancer cell lines MDA-MB-231 and BT-20, as evidenced by the cleavage of fluorogenic tetrapeptide substrate and of poly(ADP-ribose) polymerase. The activation of caspase-3-like proteases preceded TAM-induced chromatin condensation and nuclear fragmentation, the typical apoptotic morphologies. Pretreatment of cells with a specific inhibitor of caspase-3, acetyl-Asp-Glu-Val-Asp-aldehyde, or with a general inhibitor of caspases, benzyloxycarbonyl-Val-Ala-Asp-fluoromethyl ketone, prevented TAM-induced apoptosis. TAM also stimulated c-Jun NH2-terminal kinase (JNK) 1 activity, and interfering with the JNK pathway by over-expressing a DN JNK1 mutant attenuated TAM-induced apoptosis. In addition, treatment of cells with a lipid-soluble antioxidant vitamin E blocked TAM-induced caspase-3 and JNK1 activation as well as apoptosis, whereas water-soluble antioxidants N-acetyl L-cysteine and glutathione had little effect. Thus, this study demonstrates that TAM induces apoptosis in ER-negative breast cancer cells through caspase-3 and JNK1 pathways, which are probably initiated at the cell membrane by an oxidative mechanism.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms