Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2000 Dec;166(2):287-97.
doi: 10.1006/exnr.2000.7514.

Deficits in striatal dopamine D(2) receptors and energy metabolism detected by in vivo microPET imaging in a rat model of Huntington's disease

Affiliations

Deficits in striatal dopamine D(2) receptors and energy metabolism detected by in vivo microPET imaging in a rat model of Huntington's disease

D M Araujo et al. Exp Neurol. 2000 Dec.

Abstract

Functional imaging by repeated noninvasive scans of specific (18)F tracer distribution using a high-resolution small-animal PET scanner, the microPET, assessed the time course of alterations in energy utilization and dopamine receptors in rats with unilateral striatal quinolinic acid lesions. Energy utilization ipsilateral to the lesion, determined using scans of 2-deoxy-2-[(18)F]fluoro-d-glucose uptake, was compromised severely 1 week after intrastriatal excitotoxin injections. When the same rats were imaged 5 and 7 weeks postlesion, decrements in energy metabolism were even more prominent. In contrast, lesion-induced effects on dopamine D(2) receptor binding were more progressive, with an initial upregulation of [3-(2'-(18)F]fluoroethyl)spiperone binding apparent 1 week postlesion followed by a decline 5 and 7 weeks thereafter. Additional experiments revealed that marked upregulation of dopamine D(2) receptors consequent to quinolinic acid injections could be detected as early as 3 days after the initial insult. Postmortem markers of striatal GABAergic neurons were assessed in the same rats 7 weeks after the lesion: expression of glutamic acid decarboxylase and dopamine D(1) receptor mRNA, as well as [(3)H]SCH-23,390 and [(3)H]spiperone binding to dopamine D(1) and D(2) receptors, respectively, detected prominent decrements consequent to the lesion. In contrast, by 7 weeks postlesion [(3)H]WIN-35,428 binding to dopamine transport sites within the striatum appeared to be enhanced proximal to the quinolinic acid injection sites. The results demonstrate that functional imaging using the microPET is a useful technique to explore not only the progressive neurodegeneration that occurs in response to excitotoxic insults, but also to examine more closely the intricacies of neurotransmitter activity in a small animal model of HD.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources