Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2000 Nov 21;102(21):2650-8.
doi: 10.1161/01.cir.102.21.2650.

Anisotropic reentry in a perfused 2-dimensional layer of rabbit ventricular myocardium

Affiliations

Anisotropic reentry in a perfused 2-dimensional layer of rabbit ventricular myocardium

M J Schalij et al. Circulation. .

Abstract

Background: Anisotropy creates nonuniformity in electrical propagation and may contribute to the occurrence of unidirectional conduction block and reentry. We describe the characteristics of reentrant tachycardia in a 2D layer of anisotropic ventricular myocardium.

Methods and results: A Langendorff-perfused epicardial sheet (1.0+/-0.4 mm, n=35) was created by freezing the intramural layers of the rabbit left ventricle. Epicardial activation maps were constructed by use of different high-resolution mapping arrays connected to a mapping system. In 5 experiments, monophasic action potentials were recorded. In the intact left ventricle, no arrhythmias except VF could be induced. After freezing, programmed electrical stimulation or rapid pacing led to the induction of sustained VT (cycle length 130+/-11 ms). VT was caused by reentry around a functional line of block oriented parallel to the epicardial fiber direction. Action potential recordings demonstrated that the central line of block was kept refractory by electrotonic currents generated by the depolarization waves propagating at either side of the line of block. At the pivot points of the line of block, the pronounced curvature of the turning wave and abrupt loading changes created an excitable gap of 30 ms in the reentrant pathway.

Conclusions: In uniform anisotropic myocardium, reentry around a functional Z-shaped line of block may occur. The core of the circuit is kept refractory by electrotonic currents. The pronounced wave-front curvature and abrupt loading changes at the pivot points cause local conduction delay and create a small excitable gap.

PubMed Disclaimer

MeSH terms

LinkOut - more resources