Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2000 Sep-Oct;82(9-10):943-53.
doi: 10.1016/s0300-9084(00)01169-x.

Identification of the characteristics that underlie botulinum toxin potency: implications for designing novel drugs

Affiliations
Review

Identification of the characteristics that underlie botulinum toxin potency: implications for designing novel drugs

L L Simpson. Biochimie. 2000 Sep-Oct.

Abstract

Botulinum toxin is a uniquely potent substance whose natural site of action is the peripheral cholinergic nerve ending. A substantial amount of information on the cellular, subcellular and molecular aspects of toxin action has been accumulated, and as a result a sound understanding of the basis for toxin potency has been developed. The principal characteristics of the toxin molecule that account for its potency are its ability: a) to be absorbed from the gut with minimal degradation; b) to bind to receptors that maximize the prospects of a pathophysiologic outcome; c) to act by a multiplicative (viz., enzymatic) mechanism; and d) to modify a substrate that is essential for neuronal function. Interestingly, the same properties that account for potency can also be exploited to utilize the toxin as a research tool and as a therapeutic agent. Several specific examples of ways to use the toxin advantageously are presented, including: a) development of oral medications and vaccines; b) analysis of subcellular mechanisms that govern transcytosis; c) identification of cell surface markers characteristic of cholinergic nerve endings; and d) analysis of specific aspects of exocytosis, such as spontaneous quantal release and synchronous quantal release. In all likelihood, further studies on the mechanism of botulinum toxin action will reveal yet further opportunities for utilizing it as a research tool or therapeutic agent.

PubMed Disclaimer

Publication types

LinkOut - more resources