De novo design of helical bundles as models for understanding protein folding and function
- PMID: 11087311
- PMCID: PMC3050006
- DOI: 10.1021/ar970004h
De novo design of helical bundles as models for understanding protein folding and function
Abstract
De novo protein design has proven to be a powerful tool for understanding protein folding, structure, and function. In this Account, we highlight aspects of our research on the design of dimeric, four-helix bundles. Dimeric, four-helix bundles are found throughout nature, and the history of their design in our laboratory illustrates our hierarchic approach to protein design. This approach has been successfully applied to create a completely native-like protein. Structural and mutational analysis allowed us to explore the determinants of native protein structure. These determinants were then applied to the design of a dinuclear metal-binding protein that can now serve as a model for this important class of proteins.
Figures








Similar articles
-
Protein design and folding: template trapping of self-assembled helical bundles.J Pept Sci. 2001 Mar;7(3):146-51. doi: 10.1002/psc.308. J Pept Sci. 2001. PMID: 11297350
-
Designing Covalently Linked Heterodimeric Four-Helix Bundles.Methods Enzymol. 2016;580:471-99. doi: 10.1016/bs.mie.2016.05.036. Epub 2016 Jul 18. Methods Enzymol. 2016. PMID: 27586346
-
Monosaccharide templates for de novo designed 4-alpha-helix bundle proteins: template effects in carboproteins.Org Biomol Chem. 2003 Jul 7;1(13):2247-52. doi: 10.1039/b301948a. Org Biomol Chem. 2003. PMID: 12945694
-
De novo design: backbone conformational constraints in nucleating helices and beta-hairpins.J Pept Res. 1999 Sep;54(3):195-9. doi: 10.1034/j.1399-3011.1999.00119.x. J Pept Res. 1999. PMID: 10517156 Review.
-
Protein design as a challenge for peptide chemists.J Pept Sci. 1995 Jan-Feb;1(1):3-10. doi: 10.1002/psc.310010103. J Pept Sci. 1995. PMID: 9222979 Review.
Cited by
-
Design and engineering of artificial oxygen-activating metalloenzymes.Chem Soc Rev. 2016 Sep 21;45(18):5020-54. doi: 10.1039/c5cs00923e. Epub 2016 Jun 24. Chem Soc Rev. 2016. PMID: 27341693 Free PMC article. Review.
-
X-ray structure analysis of a designed oligomeric miniprotein reveals a discrete quaternary architecture.Proc Natl Acad Sci U S A. 2004 Aug 17;101(33):12183-8. doi: 10.1073/pnas.0401245101. Epub 2004 Aug 9. Proc Natl Acad Sci U S A. 2004. PMID: 15302930 Free PMC article.
-
Lanthanide-binding helix-turn-helix peptides: solution structure of a designed metallonuclease.Proc Natl Acad Sci U S A. 2003 Apr 1;100(7):3725-30. doi: 10.1073/pnas.0536562100. Epub 2003 Mar 18. Proc Natl Acad Sci U S A. 2003. PMID: 12644701 Free PMC article.
-
Improved side-chain prediction accuracy using an ab initio potential energy function and a very large rotamer library.Protein Sci. 2004 Mar;13(3):735-51. doi: 10.1110/ps.03250104. Protein Sci. 2004. PMID: 14978310 Free PMC article.
-
Computational design of a modular protein sense-response system.Science. 2019 Nov 22;366(6468):1024-1028. doi: 10.1126/science.aax8780. Science. 2019. PMID: 31754004 Free PMC article.
References
-
- Cordes MHJ, Davidson AR, Sauer RT. Sequence space, folding and protein design. Curr Opin Struct Biol. 1996;6:3–10. - PubMed
-
- Dill KA. Dominant forces in protein folding. Biochemistry. 1990;31:7133–7155. - PubMed
-
- Dobson CM. Characterization of protein folding intermediates. Curr Opin Struct Biol. 1991;1:22–27.
-
- Eaton WA, Thompson PA, Chan CK, Hagen SJ, Hofrichter J. Fast events in protein folding. Structure. 1996;4:1133–1139. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources