Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2000 Nov 21;39(46):14279-91.
doi: 10.1021/bi0015764.

Inhibition of HIV-1 reverse transcriptase-catalyzed DNA strand transfer reactions by 4-chlorophenylhydrazone of mesoxalic acid

Affiliations

Inhibition of HIV-1 reverse transcriptase-catalyzed DNA strand transfer reactions by 4-chlorophenylhydrazone of mesoxalic acid

W R Davis et al. Biochemistry. .

Abstract

DNA strand transfer reactions occur twice during retroviral reverse transcription catalyzed by HIV-1 reverse transcriptase. The 4-chlorophenylhydrazone of mesoxalic acid (CPHM) was found to be an inhibitor of DNA strand transfer reactions catalyzed by HIV-1 reverse transcriptase. Using a model strand transfer assay system described previously [Davis, W. R., et al. (1998) Biochemistry 37, 14213-14221], the mechanism of CPHM inhibition of DNA strand transfer has been characterized. CPHM was found to target the RNase H activity of HIV-1 reverse transcriptase. DNA polymerase activity was not significantly affected by CPHM; however, it did inhibit the polymerase-independent RNase H activity with an IC(50) of 2.2 microM. In the absence of DNA synthesis, CPHM appears to interfere with the translocation, or repositioning, of RT on the RNA.DNA template duplex, a step required for efficient RNA hydrolysis by RNase H. Enzyme inhibition by CPHM was found to be highly specific for HIV-1 reverse transcriptase; little or no inhibition of DNA strand transfer or DNA polymerase activity was observed with MLV or AMV reverse transcriptase, T7 DNA polymerase, or DNA polymerase I. Examination of additional 4-chlorophenylhydrazones showed that the dicarboxylic acid moiety of CPHM is essential for activity, suggesting its important role for enzyme binding. Consistent with the role of the dicarboxylic acid in inhibitor function, Mg(2+) was found to chelate directly to CPHM with a K(d) of 2.4 mM. Together, these studies suggest that the inhibitor may function by binding to enzyme-bound divalent metal cofactors.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources