Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2000 Nov 28;39(47):14464-71.
doi: 10.1021/bi0015562.

Molecular basis for P-site inhibition of adenylyl cyclase

Affiliations

Molecular basis for P-site inhibition of adenylyl cyclase

J J Tesmer et al. Biochemistry. .

Abstract

P-site inhibitors are adenosine and adenine nucleotide analogues that inhibit adenylyl cyclase, the effector enzyme that catalyzes the synthesis of cyclic AMP from ATP. Some of these inhibitors may represent physiological regulators of adenylyl cyclase, and the most potent may ultimately serve as useful therapeutic agents. Described here are crystal structures of the catalytic core of adenylyl cyclase complexed with two such P-site inhibitors, 2'-deoxyadenosine 3'-monophosphate (2'-d-3'-AMP) and 2',5'-dideoxyadenosine 3'-triphosphate (2',5'-dd-3'-ATP). Both inhibitors bind in the active site yet exhibit non- or uncompetitive patterns of inhibition. While most P-site inhibitors require pyrophosphate (PP(i)) as a coinhibitor, 2',5'-dd-3'-ATP is a potent inhibitor by itself. The crystal structure reveals that this inhibitor exhibits two binding modes: one with the nucleoside moiety bound to the nucleoside binding pocket of the enzyme and the other with the beta and gamma phosphates bound to the pyrophosphate site of the 2'-d-3'-AMP.PP(i) complex. A single metal binding site is observed in the complex with 2'-d-3'-AMP, whereas two are observed in the complex with 2', 5'-dd-3'-ATP. Even though P-site inhibitors are typically 10 times more potent in the presence of Mn(2+), the electron density maps reveal no inherent preference of either metal site for Mn(2+) over Mg(2+). 2',5'-dd-3'-ATP binds to the catalytic core of adenylyl cyclase with a K(d) of 2.4 microM in the presence of Mg(2+) and 0.2 microM in the presence of Mn(2+). Pyrophosphate does not compete with 2',5'-dd-3'-ATP and enhances inhibition.

PubMed Disclaimer

Publication types