Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2000 Dec 1;120(1-3):1-22.
doi: 10.1016/s0047-6374(00)00182-2.

The budding yeast, Saccharomyces cerevisiae, as a model for aging research: a critical review

Affiliations
Review

The budding yeast, Saccharomyces cerevisiae, as a model for aging research: a critical review

H Gershon et al. Mech Ageing Dev. .

Abstract

In this review we discuss the yeast as a paradigm for the study of aging. The budding yeast Saccharomyces cerevisiae, which can proliferate in both haploid and diploid states, has been used extensively in aging research. The budding yeast divides asymmetrically to form a 'mother' cell and a bud. Two major approaches, 'budding life span' and 'stationary phase' have been used to determine 'senescence' and 'life span' in yeast. Discrepancies observed in metabolic behavior and longevity between cells studied by these two systems raise questions of how 'life span' in yeast is defined and measured. Added to this variability in experimental approach and results is the variety of yeast strains with different genetic make up used as 'wild type' and experimental organisms. Another problematic genetic point in the published studies on yeast is the use of both diploid and haploid strains. We discuss the inherent, advantageous attributes that make the yeast an attractive choice for modern biological research as well as certain pitfalls in the choice of this model for the study of aging. The significance of the purported roles of the Sir2 gene, histone deacetylases, gene silencing, rDNA circles and stress genes in determination of yeast 'life span' and aging is evaluated. The relationship between cultivation conditions and longevity are assessed. Discrepancies between the yeast and mammalian systems with regard to aging are pointed out. We discuss unresolved problems concerning the suitability of the budding yeast for the study of basic aging phenomena.

PubMed Disclaimer

LinkOut - more resources