Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2000 Nov 30;1543(1):1-10.
doi: 10.1016/s0167-4838(00)00210-7.

Psychrophilic enzymes: revisiting the thermodynamic parameters of activation may explain local flexibility

Affiliations
Review

Psychrophilic enzymes: revisiting the thermodynamic parameters of activation may explain local flexibility

T Lonhienne et al. Biochim Biophys Acta. .

Abstract

Basic theoretical and practical aspects of activation parameters are briefly reviewed in the context of cold-adaptation. In order to reduce the error impact inherent to the transition state theory on the absolute values of the free energy (DeltaG(#)), enthalpy (DeltaH(#)) and entropy (DeltaS(#)) of activation, it is proposed to compare the variation of these parameters between psychrophilic and mesophilic enzymes, namely Delta(DeltaG(#))(p-m), Delta(DeltaH(#))(p-m) and Delta(DeltaS(#))(p-m). Calculation of these parameters from the available literature shows that the main adaptation of psychrophilic enzymes lies in a significant decrease of DeltaH(#), therefore leading to a higher k(cat), especially at low temperatures. Moreover, in all cases including cold-blooded animals, DeltaS(#) exerts an opposite and negative effect on the gain in k(cat). It is argued that the magnitude of this counter-effect of DeltaS(#) can be reduced by keeping some stable domains, while increasing the flexibility of the structures required to improve catalysis at low temperature, as demonstrated in several cold-active enzymes. This enthalpic-entropic balance provides a new approach explaining the two types of conformational stability detected by recent microcalorimetric experiments on psychrophilic enzymes.

PubMed Disclaimer

LinkOut - more resources