Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2000 Oct;49(10):497-505.
doi: 10.1007/s000110050622.

Peroxisome proliferator-activated receptors (PPARs): nuclear receptors at the crossroads between lipid metabolism and inflammation

Affiliations
Review

Peroxisome proliferator-activated receptors (PPARs): nuclear receptors at the crossroads between lipid metabolism and inflammation

G Chinetti et al. Inflamm Res. 2000 Oct.

Abstract

Peroxisome proliferator-activated (PPARs) are ligand-activated transcription factors belonging to the nuclear receptor family. PPARs function as regulators of lipid and lipoprotein metabolism and glucose homeostasis and influence cellular proliferation, differentiation and apoptosis. PPARalpha is highly expressed in tissues such as liver, muscle, kidney and heart, where it stimulates the beta-oxidative degradation of fatty acids. PPARgamma is predominantly expressed in intestine and adipose tissue. PPARgamma triggers adipocyte differentiation and promotes lipid storage. The hypolipidemic fibrates and the antidiabetic glitazones are synthetic ligands for PPARalpha and PPARgamma, respectively. Furthermore, fatty acids and eicosanoids are natural PPAR ligands: PPARalpha is activated by leukotriene B4, whereas prostaglandin J2 is a PPARgamma ligand. These observations suggested a potential role for PPARs not only in metabolic but also in inflammation control. The first evidence for a role of PPARalpha in inflammation control came from the demonstration that PPARalpha deficient mice display a prolonged response to inflammatory stimuli. It was suggested that PPARalpha deficiency results in a reduced beta-oxidative degradation of these inflammatory fatty acid derivatives. More recently, PPAR activators were shown to inhibit the activation of inflammatory response genes (such as IL-2, IL-6, IL-8, TNFalpha and metalloproteases) by negatively interfering with the NF- kappaB, STAT and AP-1 signalling pathways. PPAR activators exert these anti-inflammatory activities in different immunological and vascular wall cell types such as monocyte/macrophages, endothelial, epithelial and smooth muscle cells in which PPARs are expressed. These recent findings indicate a modulatory role for PPARs in the control of the inflammatory response with potential therapeutic applications in inflammation-related diseases, such as atherosclerosis and inflammatory bowel disease.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources