Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2000 Nov 24;87(11):E44-52.
doi: 10.1161/01.res.87.11.e44.

Estrogen receptor alpha and endothelial nitric oxide synthase are organized into a functional signaling module in caveolae

Affiliations
Free article

Estrogen receptor alpha and endothelial nitric oxide synthase are organized into a functional signaling module in caveolae

K L Chambliss et al. Circ Res. .
Free article

Abstract

Estrogen causes nitric oxide (NO)-dependent vasodilation due to estrogen receptor (ER) alpha-mediated, nongenomic activation of endothelial NO synthase (eNOS). The subcellular site of interaction between ERalpha and eNOS was determined in studies of isolated endothelial cell plasma membranes. Estradiol (E(2), 10(-8) mol/L) caused an increase in eNOS activity in plasma membranes in the absence of added calcium, calmodulin, or eNOS cofactors, which was blocked by ICI 182,780 and ERalpha antibody. Immunoidentification studies detected the same 67-kDa protein in endothelial cell nucleus, cytosol, and plasma membrane. Plasma membranes from COS-7 cells expressing eNOS and ERalpha displayed ER-mediated eNOS stimulation, whereas membranes from cells expressing eNOS alone or ERalpha plus a myristoylation-deficient mutant eNOS were insensitive. Fractionation of endothelial cell plasma membranes revealed ERalpha protein in caveolae, and E(2) caused stimulation of eNOS in isolated caveolae that was ER-dependent; noncaveolae membranes were insensitive. Acetylcholine and bradykinin also activated eNOS in isolated caveolae. Furthermore, the effect of E(2) on eNOS in caveolae was prevented by calcium chelation. Thus, a subpopulation of ERalpha is localized to endothelial cell caveolae where they are coupled to eNOS in a functional signaling module that may regulate the local calcium environment. The full text of this article is available at http://www.circresaha.org.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources