Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2000 Dec 20;161(2):221-9.
doi: 10.1016/s0304-3835(00)00616-9.

Inhibition of epstein-barr virus early antigen activation promoted by 12-O-tetradecanoylphorbol-13-acetate by the non-steroidal anti-inflammatory drugs

Affiliations

Inhibition of epstein-barr virus early antigen activation promoted by 12-O-tetradecanoylphorbol-13-acetate by the non-steroidal anti-inflammatory drugs

G J Kapadia et al. Cancer Lett. .

Abstract

As part of our screening program for cancer inhibitory agents effective specifically in the promotion stage of cancer development, we have evaluated the possible inhibitory effects of 36 non-steroidal anti-inflammatory drugs (NSAIDs) on the Epstein-Barr virus early antigen (EBV-EA) activation which was induced by 12-O-tetradecanoylphorbol-13-acetate (TPA) in Raji cells. All the drugs were observed to inhibit the EBV-EA activation at low doses with low toxicity. The two most active anti-tumor promoting agents were the arylacetic acid derivatives, etodolac and sulindac. We also report for the first time the activities of 14 new NSAIDs belonging to different classes as potential cancer chemopreventive agents. A structure-activity relationship study showed that among the salicylic acid derivative tested, the oxidation of the thiol group to dithiol derivatives results in the reduction of the activity. Introduction of amino group on the salicylic acid molecules also results in the reduction of activity in the EBV-EA assay. The results are of great interest in the development of NSAIDs as cancer chemopreventive agents, which halt cancer progression in multistage carcinogenesis, where successive activities are required to evolve into fully-fledged and metastatic cancer.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources