Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2001 Mar 16;276(11):7867-75.
doi: 10.1074/jbc.M005379200. Epub 2000 Nov 28.

Production of brominating intermediates by myeloperoxidase. A transhalogenation pathway for generating mutagenic nucleobases during inflammation

Affiliations
Free article

Production of brominating intermediates by myeloperoxidase. A transhalogenation pathway for generating mutagenic nucleobases during inflammation

J P Henderson et al. J Biol Chem. .
Free article

Abstract

The existence of interhalogen compounds was proposed more than a century ago, but no biological roles have been attributed to these highly oxidizing intermediates. In this study, we determined whether the peroxidases of white blood cells can generate the interhalogen gas bromine chloride (BrCl). Myeloperoxidase, the heme enzyme secreted by activated neutrophils and monocytes, uses H2O2 and Cl(-) to produce HOCl, a chlorinating intermediate. In contrast, eosinophil peroxidase preferentially converts Br(-) to HOBr. Remarkably, both myeloperoxidase and eosinophil peroxidase were able to brominate deoxycytidine, a nucleoside, and uracil, a nucleobase, at plasma concentrations of Br(-) (100 microM) and Cl(-) (100 mM). The two enzymes used different reaction pathways, however. When HOCl brominated deoxycytidine, the reaction required Br(-) and was inhibited by taurine. In contrast, bromination by HOBr was independent of Br(-) and unaffected by taurine. Moreover, taurine inhibited 5-bromodeoxycytidine production by the myeloperoxidase-H2O2-Cl(-)- Br(-) system but not by the eosinophil peroxidase-H2O2-Cl(-)-Br(-) system, indicating that bromination by myeloperoxidase involves the initial production of HOCl. Both HOCl-Br(-) and the myeloperoxidase-H2O2-Cl(-)-Br(-) system generated a gas that converted cyclohexene into 1-bromo-2-chlorocyclohexane, implicating BrCl in the reaction. Moreover, human neutrophils used myeloperoxidase, H2O2, and Br(-) to brominate deoxycytidine by a taurine-sensitive pathway, suggesting that transhalogenation reactions may be physiologically relevant. 5-Bromouracil incorporated into nuclear DNA is a well known mutagen. Our observations therefore raise the possibility that transhalogenation reactions initiated by phagocytes provide one pathway for mutagenesis and cytotoxicity at sites of inflammation.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources