Nutritional requirements and nitrogen-dependent regulation of proteinase activity of Lactobacillus helveticus CRL 1062
- PMID: 11097908
- PMCID: PMC92462
- DOI: 10.1128/AEM.66.12.5316-5321.2000
Nutritional requirements and nitrogen-dependent regulation of proteinase activity of Lactobacillus helveticus CRL 1062
Abstract
The nutritional requirements of Lactobacillus helveticus CRL 1062 were determined with a simplified chemically defined medium (SCDM) and compared with those of L. helveticus CRL 974 (ATCC 15009). Both strains were found to be prototrophic for alanine, glycine, asparagine, glutamine, and cysteine. In addition, CRL 1062 also showed prototrophy for lysine and serine. The microorganisms also required riboflavin, calcium pantothenate, pyridoxal, nicotinic acid, and uracil for growth in liquid SCDM. The growth rate and the synthesis of their cell membrane-bound serine proteinases, but not of their intracellular leucyl-aminopeptidases, were influenced by the peptide content of the medium. The highest proteinase levels were found during cell growth in basal SCDM, while the synthesis of this enzyme was inhibited in SCDM supplemented with Casitone, Casamino Acids, or beta-casein. Low-molecular-mass peptides (<3,000 Da), extracted from Casitone, and the dipeptide leucylproline (final concentration, 5 mM) play important roles in the medium-dependent regulation of proteinase activity. The addition of the dipeptide leucylproline (5 mM) to SCDM reduced proteinase activity by 25%.
Figures
References
-
- Cocaign-Bousquet M, Garrigues C, Novak L, Lindley N D, Loubiere P. Rational development of a simple synthetic medium for the sustained growth of Lactococcus lactis. J Appl Bacteriol. 1995;79:108–116.
-
- Deguchi Y, Morishita T. Nutritional requirements in multiple auxotrophic lactic acid bacteria: genetic lesions affecting amino acid biosynthetic pathways in Lactococcus lactis, Enterococcus faecium, and Pediococcus acidilactici. Biosci Biotech Biochem. 1992;56:913–918. - PubMed
-
- De Man J C, Rogosa M, Sharpe M E. A medium for the cultivation of lactobacilli. J Appl Bacteriol. 1960;23:130–135.
-
- Dempsey W B. Synthesis of pyridoxal phosphate. In: Neidhardt F C, et al., editors. Escherichia coli and Salmonella typhimurium: cellular and molecular biology. Washington, D.C.: American Society for Microbiology; 1987. pp. 539–543.
-
- Exterkate F A. Differences in short peptide-substrate cleavage by two cell-envelope-located serine proteinases of Lactococcus lactis subsp. cremoris are related to secondary binding specificity. Appl Microbiol Biotechnol. 1990;33:401–406. - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Molecular Biology Databases
