Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2000;194(2):87-93.

[Evolution and development of dopaminergic neurotransmitter systems in vertebrates]

[Article in French]
Affiliations
  • PMID: 11098433
Review

[Evolution and development of dopaminergic neurotransmitter systems in vertebrates]

[Article in French]
M Kapsimali et al. J Soc Biol. 2000.

Abstract

Dopamine is a widespread neurotransmitter which exerts numerous neuromodulatory actions in the vertebrate central nervous system. This pleiotropic activity relies on the organisation of dopamine-synthesizing neuronal pathways and on a multiplicity of specific membrane receptors. A comparative approach has been undertaken to gain clues on the genetic events which took place during evolution to devise the dopamine systems of modern vertebrates. The localisation and phenotype of dopamine-synthesizing neurones is determined by different gene networks in each of the dopaminergic nuclei. However, despite this amazing diversity, the overall organisation of the dopaminergic nuclei is strinkingly conserved in the main vertebrates groups. In sharp contrast, the number of dopamine receptors subtypes has been multiplied by two major steps of gene duplications during vertebrates evolution. The first one occurred in the lineage leading to agnathans, whereas the second was concomitant to the emergence of cartilaginous fish. Accordingly, three subtypes exist in D1 receptor class (D1A, D1B, D1C) in all the jawed vertebrates, with two exceptions: eutherian mammals where only two D1 subtypes are found (D1A, D1B) and archosaurs where a fourth subtype is present (D1D). Comparisons of the pharmacological and biochemical characteristics of the dopamine receptors in vertebrate groups revealed homologous features that define each of the receptor subtypes and that have been fixed after gene duplications. The comparison of the distribution of the D1 receptor transcripts in the brain of teleosts and mammals points to significant conserved or derived expression territories, revealing previously neglected aspects of dopamine physiology in vertebrates.

PubMed Disclaimer

Similar articles

Cited by

MeSH terms