Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2000 Oct;83(2-3):175-80.
doi: 10.1007/s004210000276.

Ca2+ accumulation and cell damage in skeletal muscle during low frequency stimulation

Affiliations
Review

Ca2+ accumulation and cell damage in skeletal muscle during low frequency stimulation

H Gissel. Eur J Appl Physiol. 2000 Oct.

Abstract

Electrical stimulation has been shown to produce a marked increase in Ca2+ influx and Ca2+ content in rat skeletal muscle. Long-term low-frequency stimulation (1 Hz, 240 min) increased 45Ca uptake by 30% and 154% in soleus and extensor digitorum longus muscles, respectively. Studies using Ca2+-fluorescent dyes have shown that intracellular concentrations of free Ca2+ are increased up to threefold during long-term low-frequency stimulation, suggesting that muscle cells have difficulties in handling the Ca2+ taken up during stimulation. Furthermore, long-term low-frequency stimulation induces leakage of the intracellular enzyme lactate dehydrogenase from the muscles. This leakage may reflect degradation of membrane proteins by the Ca2+-activated neutral protease calpain. This, in turn, leads to further influx of Ca2+ and further acceleration of protein breakdown. Membrane leakages are likely to result in sensations of pain in the damaged muscle. It is suggested that Ca2+ plays a central role in the development of muscle fibre injury during prolonged muscle activity of workers using a computer mouse.

PubMed Disclaimer

LinkOut - more resources