Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2000 Dec 1;287(7):477-84.
doi: 10.1002/1097-010x(20001201)287:7<477::aid-jez3>3.0.co;2-4.

Mitogen-activated protein kinases and anoxia tolerance in turtles

Affiliations

Mitogen-activated protein kinases and anoxia tolerance in turtles

S C Greenway et al. J Exp Zool. .

Abstract

The response of two vertebrate mitogen-activated protein kinase (MAPK) family members, the extracellular signal-regulated kinases (ERKs) and c-Jun NH2-terminal kinases (JNKs), to anoxia exposure in vivo was examined in organs (liver, heart, kidney, brain, spleen) of the anoxia-tolerant adult turtle, Trachemys scripta elegans. ERKs activities rose during anoxia only in spleen (a 2.8-fold increase). JNK activity showed a significant increase only in liver (4-fold increase) after 5 hr of anoxic submergence but declined thereafter. Levels of the transcription factor c-Fos were strongly suppressed in liver, heart, and kidney of anoxia-exposed turtles, whereas levels increased 2-fold in anoxic brain. The effect of anoxia on c-Myc was organ-specific and variable with 2- and 1.5-fold increases in protein expression in kidney and brain, respectively, and a 60% decrease in anoxic spleen. These results for an anoxia-tolerant animal suggest the potential importance of the MAPKs and of the immediate-early genes (c-fos, c-myc) in mediating adaptive responses to oxygen deprivation.

PubMed Disclaimer

Publication types

MeSH terms

Substances

LinkOut - more resources