Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2000 Dec 15;96(13):4313-8.

Interferon alpha down-regulates telomerase reverse transcriptase and telomerase activity in human malignant and nonmalignant hematopoietic cells

Affiliations
  • PMID: 11110707
Free article
Comparative Study

Interferon alpha down-regulates telomerase reverse transcriptase and telomerase activity in human malignant and nonmalignant hematopoietic cells

D Xu et al. Blood. .
Free article

Abstract

Recently, the derepressed expression of the catalytic subunit of telomerase, human telomerase reverse transcriptase (hTERT), the enzyme that elongates telomeres, has been implicated as an important step in the immortalization process. The exact regulation of hTERT expression, which is the rate-limiting factor for telomerase activity, is at present unclear. As transformed cells seem to be dependent on a constitutive telomerase activity, the availability of inhibitors would potentially be of great value in antineoplastic therapy. Interferons (IFNs) have been successfully used in the treatment of several forms of malignancies, but the underlying molecular mechanisms responsible for the antitumor activity are poorly defined. In this study we have investigated the effects of IFNs on hTERT expression and telomerase activity. We found that IFN-alpha rapidly (commonly within 4 hours) and significantly down-regulates the expression of hTERT and telomerase activity in a number of human malignant hematopoietic cell lines, primary leukemic cells from patients with acute leukemia as well as T-lymphocytes from healthy donors. This effect of IFN-alpha did not seem to depend on IFN-alpha-mediated cell growth arrest or alterations in c-myc expression. The finding that IFN induces a repression of hTERT and a decrease in telomerase activity suggests a novel mechanism that may play a significant role in the antitumor action of IFN. (Blood. 2000;96:4313-4318)

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources