Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2000 Nov;362(4-5):406-12.
doi: 10.1007/s002100000294.

Interaction of the antidepressant mirtazapine with alpha2-adrenoceptors modulating the release of 5-HT in different rat brain regions in vivo

Affiliations

Interaction of the antidepressant mirtazapine with alpha2-adrenoceptors modulating the release of 5-HT in different rat brain regions in vivo

H J Bengtsson et al. Naunyn Schmiedebergs Arch Pharmacol. 2000 Nov.

Abstract

Mirtazapine (MIR) is a novel antidepressant, reported to raise extracellular noradrenaline (NA) through blockade of alpha2-autoreceptors and serotonin (5-HT) output via (1) indirect activation of facilitatory alpha1-adrenoceptors on the cell bodies of ascending 5-HT neurones and (2) blockade of presynaptic release-modulating alpha2-heteroreceptors on 5-HT terminals in the forebrain. To further assess the effect of MIR on NA/5-HT system interplay, including putative regional differences in the effects of the drug on 5-HT release in rat forebrain, we used in vivo microdialysis in anaesthetised rats. Probes were implanted in the dorsal hippocampus (DH) and frontal cortex (FCx), representing median and dorsal raphe 5-HT projection areas, respectively. In the DH, MIR (10 mg/kg s.c.) completely blocked the 5-HT release-suppressing action of the selective alpha2-adrenoceptor agonist clonidine (0.1 mg/kg s.c.), but had no effect per se on the 5-HT output. Neither drug significantly changed the 5-HT levels in the FCx. MIR perfused locally (10 microM via reverse-dialysis) also failed to significantly elevate 5-HT output, and did not affect the clonidine response in either brain area. Thus, the data confirm the basic alpha2-adrenoceptor-blocking properties of MIR, but are only partly concordant with previous studies reporting an increase of 5-HT output after MIR alone. Moreover, we find no elevation in 5-HT by the reference alpha2-adrenoceptor antagonist idazoxan (0.3-1.0 mg/kg s.c.). The discrepancies encountered, and the potential ability of alpha2-adrenoceptor antagonists in general to raise the output of 5-HT, are discussed with particular reference to methodological and other factors that may influence the experimental outcome (e.g., brain regional aspects, different alpha2-adrenoceptor subtypes, potential differences in adrenoceptor tone under varying experimental conditions).

PubMed Disclaimer

Publication types

LinkOut - more resources