Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2000 Dec;162(6):2272-7.
doi: 10.1164/ajrccm.162.6.2003127.

Effect of endogenous and exogenous prostaglandin E(2) on interleukin-1 beta-induced cyclooxygenase-2 expression in human airway smooth-muscle cells

Affiliations
Comparative Study

Effect of endogenous and exogenous prostaglandin E(2) on interleukin-1 beta-induced cyclooxygenase-2 expression in human airway smooth-muscle cells

A Bonazzi et al. Am J Respir Crit Care Med. 2000 Dec.

Abstract

We studied the effect of endogenous and exogenous prostaglandin E(2) (PGE(2)), a metabolite of arachidonic acid through the cyclooxygenase (COX) pathway, on interleukin (IL)-1 beta-induced COX-2 expression, using primary cultures of human bronchial smooth-muscle cells (HBSMC). Treatment with exogenous PGE(2) resulted in enhanced expression of IL-1 beta-induced COX-2 protein and messenger RNA (mRNA) as compared with the effect of the cytokine per se. Inhibition of PGE(2) production with a nonselective COX inhibitor (flurbiprofen, 10 microM) resulted in a significant reduction in IL-1 beta- induced COX-2 expression, supporting a role of endogenous COX metabolites in the modulation of COX-2 expression. None of the experimental conditions used in the study affected the expression of constitutive cyclooxygenase (COX-1). Treatment with cycloheximide to inhibit translation, and with dexamethasone or actinomycin D to inhibit transcription, linked the effect of PGE(2) to the transcriptional level of COX-2 mRNA rather than to a potential effect on protein and/or mRNA stabilization. PGE(2) increased adenylate cyclase activity in a concentration dependent manner, and forskolin, a direct activator of adenylate cyclase, caused a marked increase in IL-1 beta-dependent COX-2, suggesting the existence of a causal relationship between the two events. The same results were observed with salbutamol, a bronchodilator that acts by increasing cyclic adenosine monophosphate. The effect of PGE(2) on COX-2 expression may contribute to the hypothesized antiinflammatory role of PGE(2) in human airways, providing a self-amplifying loop leading to increased biosynthesis of PGE(2) during an inflammatory event.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources