Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2000 Dec 19;39(50):15399-409.
doi: 10.1021/bi001076a.

High-level expression and mutagenesis of recombinant human phosphatidylcholine transfer protein using a synthetic gene: evidence for a C-terminal membrane binding domain

Affiliations

High-level expression and mutagenesis of recombinant human phosphatidylcholine transfer protein using a synthetic gene: evidence for a C-terminal membrane binding domain

L Feng et al. Biochemistry. .

Abstract

Phosphatidylcholine transfer protein (PC-TP) is a 214-amino acid cytosolic protein that promotes intermembrane transfer of phosphatidylcholines, but no other phospholipid class. To probe mechanisms for membrane interactions and phosphatidylcholine binding, we expressed recombinant human PC-TP in Escherichia coli using a synthetic gene. Optimization of codon usage for bacterial protein translation increased expression of PC-TP from trace levels to >10% of the E. coli cytosolic protein mass. On the basis of secondary structure predictions of an amphipathic alpha-helix (residues 198-212) in proximity to a hydrophobic alpha-helix (residues 184-193), we explored whether the C-terminus might interact with membranes and promote binding of phosphatidylcholines. Consistent with this possibility, truncation of five residues from the C-terminus shortened the predicted amphipathic alpha-helix and decreased PC-TP activity by 50%, whereas removal of 10 residues eliminated the alpha-helix, abolished activity, and markedly decreased the level of membrane binding. Circular dichroic spectra of synthetic peptides containing one ((196-214)PC-TP) or both ((183-214)PC-TP) predicted C-terminal alpha-helices in aqueous buffer were most consistent with random coil structures. However, both peptides adopted alpha-helical configurations in the presence of trifluoroethanol or phosphatidylcholine/phosphatidylserine small unilamellar vesicles. The helical content of (196-214)PC-TP increased in proportion to vesicle phosphatidylserine content, consistent with stabilization of the alpha-helix at the membrane surface. In contrast, the helical content of (183-214)PC-TP was not influenced by vesicle composition, implying that the more hydrophobic of the alpha-helices penetrated into the membrane bilayer. These studies suggest that tandem alpha-helices located near the C-terminus of PC-TP facilitate membrane binding and extraction of phosphatidylcholines.

PubMed Disclaimer

Publication types

MeSH terms

Substances

LinkOut - more resources