Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2000 Dec 15;1524(2-3):143-8.
doi: 10.1016/s0304-4165(00)00149-5.

Placental arylamine N-acetyltransferase type 1: potential contributory source of urinary folate catabolite p-acetamidobenzoylglutamate during pregnancy

Affiliations

Placental arylamine N-acetyltransferase type 1: potential contributory source of urinary folate catabolite p-acetamidobenzoylglutamate during pregnancy

A Upton et al. Biochim Biophys Acta. .

Abstract

Human arylamine N-acetyltransferase type 1 (NAT1), better known as a drug-metabolising enzyme, has been proposed to acetylate the folate catabolite p-aminobenzoylglutamate (p-abaglu) to N-acetamidobenzoylglutamate (ap-abaglu) which is a major urinary folate catabolite. Using mass spectroscopic analysis, we demonstrate the formation of ap-abaglu by recombinant human NAT1 and human placental homogenates. Using density gradient centrifugation the placental enzymic activity which acetylates p-aba and the placental enzymic activity acetylating p-abaglu both have an S(20,w) value of 3.25 S. This is the expected value for a monomer of human NAT1 (33 kDa). The specific NAT1 inhibitor 5-iodosalicylate inhibits acetylation of both p-aba and p-abaglu catalysed by either recombinant human NAT1 or placental samples as the source of enzyme. These data demonstrate that NAT1 is the major placental enzyme involved in acetylating p-abaglu.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources