Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2000 Dec;58(6):2351-66.
doi: 10.1046/j.1523-1755.2000.00419.x.

Hypoxia promotes fibrogenesis in human renal fibroblasts

Affiliations
Free article

Hypoxia promotes fibrogenesis in human renal fibroblasts

J T Norman et al. Kidney Int. 2000 Dec.
Free article

Abstract

Background: The mechanisms underlying progressive renal fibrosis are unknown, but the common association of fibrosis and microvascular loss suggests that hypoxia per se may be a fibrogenic stimulus.

Methods: To determine whether human renal fibroblasts (HRFs), the primary matrix-producing cells in the tubulointerstitium, possess oxygen-sensitive responses relevant to fibrogenesis, cells were exposed to 1% O2 in vitro.

Results: Hypoxia simultaneously stimulated extracellular matrix synthesis and suppressed turnover with increased production of collagen alpha1(I) (Coll-I), decreased expression of collagenase, and increased tissue inhibitor of metalloproteinase (TIMP)-1. These effects are time dependent, require new RNA and protein synthesis, and are specific to hypoxia. The changes in Coll-I and TIMP-1 gene expression involve a heme-protein O2 sensor and protein kinase- and tyrosine kinase-mediated signaling. Although hypoxia induced transforming growth factor-beta1 (TGF-beta1), neutralizing anti-TGF-beta1-antibody did not block hypoxia-induced Coll-I and TIMP-1 mRNA expression. Furthermore, hypoxic-cell conditioned-medium had no effect on the expression of these mRNAs in naive fibroblasts, suggesting direct effects on gene transcription. Transient transfections identified a hypoxia response element (HRE) in the TIMP-1 promoter and demonstrated HIF-1-dependent promoter activation by decreased ambient pO2.

Conclusions: These data suggest that hypoxia co-ordinately up-regulates matrix production and decreases turnover in renal fibroblasts. The results support a role for hypoxia in the pathogenesis of fibrosis and provide evidence for novel, direct hypoxic effects on the expression of genes involved in fibrogenesis.

PubMed Disclaimer

Publication types

MeSH terms