Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2001 Jan 1;353(Pt 1):91-100.

Evidence for the presence of phospholipid hydroperoxide glutathione peroxidase in human platelets: implications for its involvement in the regulatory network of the 12-lipoxygenase pathway of arachidonic acid metabolism

Affiliations

Evidence for the presence of phospholipid hydroperoxide glutathione peroxidase in human platelets: implications for its involvement in the regulatory network of the 12-lipoxygenase pathway of arachidonic acid metabolism

M Sutherland et al. Biochem J. .

Abstract

The 12-lipoxygenase pathway of arachidonic acid metabolism in platelets and other cells is bifurcated into a reduction route yielding 12-hydroxyeicosatetraenoic acid (12-HETE) and an isomerization route forming hepoxilins. Here we show for the first time the presence of phospholipid hydroperoxide glutathione peroxidase (PHGPx) protein and its activity in platelets. The ratio of the activity of PHGPx to that of cytosolic glutathione peroxidase (GPx-1) was consistently found to be approx. 1:60 in platelets and UT7 megakaryoblasts. Moreover, short-lived PHGPx mRNA was detected in megakaryocytes but not in platelets. Carboxymethylation of selenium-containing glutathione peroxidases by iodoacetate, which results in the inactivation of PHGPx and GPx-1 without inhibition of 12-lipoxygenase, markedly altered the pattern of arachidonic acid metabolism in human platelets. Whereas the formation of 12-HETE was inhibited by 80%, a concomitant accumulation of 12-hydroperoxyeicosatetraenoic acid (12-HpETE) by two orders of magnitude as well as the formation of hepoxilins A(3) and B(3) were observed. The formation of hepoxilins also occurred when 12-HpETE was added to untreated platelets. In selenium-deficient UT7 cells, which were devoid of GPx-1 but not of PHGPx, the reduction of 12-HPETE was retained, albeit with a lower rate than in control cells containing GPx-1. We therefore believe that both GPx-1 and PHGPx are involved in the regulatory network of the 12-lipoxygenase pathway in platelets and other mammalian cells. Moreover, the diminution of hydroperoxide tone in platelets incubated with arachidonic acid leads primarily to the formation of 12-HETE, whereas the increase in hydroperoxide tone (a situation found under oxidative stress or selenium deficiency or on incubation with 12-HPETE) partly diverts the 12-lipoxygenase pathway from the reduction route to the isomerization route, thus resulting in the formation of hepoxilins.

PubMed Disclaimer

Similar articles

Cited by

References

    1. Prostaglandins Other Lipid Mediat. 1999 Oct;58(2-4):65-75 - PubMed
    1. Blood. 1986 May;67(5):1286-92 - PubMed
    1. Biochem Pharmacol. 2000 Feb 15;59(4):435-40 - PubMed
    1. Proc Natl Acad Sci U S A. 1974 Feb;71(2):345-9 - PubMed
    1. Biochemistry. 1978 Jun 27;17(13):2639-44 - PubMed

MeSH terms

LinkOut - more resources