Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2001 Jan;18(1):25-32.
doi: 10.3892/ijo.18.1.25.

In vitro studies of a prolactin antagonist, hPRL-G129R in human breast cancer cells

Affiliations

In vitro studies of a prolactin antagonist, hPRL-G129R in human breast cancer cells

P Ramamoorthy et al. Int J Oncol. 2001 Jan.

Abstract

Human prolactin (hPRL) has been shown to be one of the important survival/growth factors that promotes the proliferation of breast cancer cells in an autocrine/paracrine manner. In our recent studies, we demonstrated that a hPRL antagonist with a single amino acid substitution mutation (hPRL-G129R) was able to inhibit breast cancer cell proliferation via induction of apoptosis (1). In this study three independent yet related experiments were carried out regarding the effects of hPRL-G129R in breast cancer cells. We investigated the possible mechanism(s) of hPRL-G129R induced apoptosis in breast cancer cells. It is well documented that transforming growth factors (TGF) in conjunction with hormones such as estrogen and PRL play a major role in modulating the proliferation and apoptosis of mammary cells. We first investigated the relationships between hPRL/hPRL-G129R and TGFs. We show that hPRL is able to down-regulate TGF beta 1 (apoptotic factor) secretion and up-regulate TGF alpha (survival factor) secretion in a dose-dependent manner in T-47D cells. More importantly the hPRL antagonist up-regulates TGF beta 1 and down-regulates TGF alpha secretion. When hPRL-G129R was applied together with hPRL, it blocked the effects of hPRL. Secondly, we tested the possible involvement of caspases in hPRL-G129R induced apoptosis. We have shown that caspase-3 is activated by hPRL-G129R at a concentration of 250 ng/ml in T-47D breast cancer cells. Thirdly, we explored the additive effects of an anti-neoplastic drug, cisplatin, with the hPRL-G129R in T47D breast cancer cells. We show that cisplatin and hPRL-G129R when applied together resulted in about 40% growth inhibition in T-47D cells.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms