Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2000 Dec;14(12):2054-65.
doi: 10.1210/mend.14.12.0568.

Janus kinase 2 (JAK2) regulates prolactin-mediated chloride transport in mouse mammary epithelial cells through tyrosine phosphorylation of Na+-K+-2Cl- cotransporter

Affiliations

Janus kinase 2 (JAK2) regulates prolactin-mediated chloride transport in mouse mammary epithelial cells through tyrosine phosphorylation of Na+-K+-2Cl- cotransporter

N G Selvaraj et al. Mol Endocrinol. 2000 Dec.

Abstract

Epithelial chloride (Cl-) transport is achieved by the coordinated action of symporters such as the Na+-K+-2Cl- cotransporter (NKCC1) and chloride channels such as the cystic fibrosis transmembrane conductance regulator (CFTR). As a secretory tissue, mammary epithelial cells are obvious candidates for such mechanisms, but Cl- transport and its hormonal regulation have been poorly delineated in mammary epithelial cells. We determined whether the mammary epithelial cell line, HC11, transports chloride and whether this was regulated by PRL, a hormone known to stimulate ion transport. HC11 cells express both CFTR and NKCC1. Exposure to PRL or PGE1 increased Cl- transport in HC11 cells. This was inhibited by the NKCC1 blocker, furosemide, and by the Cl- channel inhibitor, diphenylamine 2-carboxylate. Dose and time course of PRL action indicate that PRL had maximal effect on Cl- transport at 1 microg/ml and at 10 min of stimulation. Examination of the signaling pathways suggests that the PRL effect on Cl- transport does not involve an increase in [Ca2+]i or MAP kinase activity. RT-PCR analyses indicate that HC11 cells express mRNA for Janus kinase 1 (JAK1), JAK2, and signal transducer and activator of transcription 5 (STAT5) but not for JAK3. PRL treatment of HC11 cells increased phosphorylation of STAT5. The JAK2 inhibitor AG490 blocked phosphorylation of STAT5 and PRL-induced, but not PGE1-induced, Cl- transport. NKCC1, but not CFTR, is tyrosine phosphorylated in HC11 cells. PRL enhanced tyrosine phosphorylation of NKCC1, and this effect was attenuated by the JAK2 inhibitor AG490. These results are the first demonstrations of a role for tyrosine phosphorylation of NKCC1 and of the PRL-JAK2 cascade in the regulation of Cl- transport.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

Substances