Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2000 Dec;49(12):2012-20.
doi: 10.2337/diabetes.49.12.2012.

Dehydroepiandrosterone sulfate and beta-cell function: enhanced glucose-induced insulin secretion and altered gene expression in rodent pancreatic beta-cells

Affiliations

Dehydroepiandrosterone sulfate and beta-cell function: enhanced glucose-induced insulin secretion and altered gene expression in rodent pancreatic beta-cells

J S Dillon et al. Diabetes. 2000 Dec.

Abstract

Administration of dehydroepiandrosterone (DHEA), or its sulfated form (DHEAS), controls hyperglycemia in diabetic rodents without directly altering insulin sensitivity. We show that DHEAS enhanced glucose-stimulated insulin secretion when administered in vivo to rats or in vitro to beta-cell lines, without changing cellular insulin content. Insulin secretion increased from 3 days of steroid exposure in vitro, suggesting that DHEAS did not directly activate the secretory processes. DHEAS selectively increased the beta-cell mRNA expression of acyl CoA synthetase-2 and peroxisomal acyl CoA oxidase in a time-dependent manner. Although DHEAS is a peroxisomal proliferator, it did not alter the mRNA expression of peroxisomal proliferator-activated receptor (PPAR) alpha or beta, or enhance the activity of transfected PPAR alpha, beta, or gamma in vitro. Thus, DHEAS directly affected the beta-cell to enhance glucose-stimulated insulin secretion and increased the mRNA expression of specific beta-cell mitochondrial and peroxisomal lipid metabolic enzymes. This effect of DHEAS on insulin secretion may contribute to the amelioration of hyperglycemia seen in various rodent models of diabetes.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources