The CD24/P-selectin binding pathway initiates lung arrest of human A125 adenocarcinoma cells
- PMID: 11118057
The CD24/P-selectin binding pathway initiates lung arrest of human A125 adenocarcinoma cells
Abstract
Carbohydrates on tumor cells have been shown to play an important role in tumor metastasis. We demonstrated before that CD24, a Mr 35,000-60,000 mucine-type glycosylphosphatidylinositol-linked cell surface molecule, can function as ligand for P-selectin and that the sialylLex carbohydrate is essential for CD24-mediated rolling of tumor cells on P-selectin. To investigate the role of both antigens more closely, we transfected human A125 adenocarcinoma cells with CD24 and/or fucosyltransferase VII (Fuc TVII) cDNAs. Stable transfectants expressed CD24 and/or sialylLex. Biochemical analysis confirmed that in A125-CD24/FucTVII double transfectants, CD24 was modified with sialylLex. Only double transfectants showed rolling on P-selectin in vivo. When injected into mice, double transfectants arrested in the lungs, and this step was P-selectin dependent because it was strongly enhanced in lipopolysaccharide (LPS) pretreated wild-type mice but not in P-selectin knockout mice. CD24 modified by sialylLex was required on the tumor cells because the LPS-induced lung arrest was abolished by removal of CD24 from the cell surface by phosphatidylinositol-specific phospholipase C. A125-FucTVII single transfectants expressing sialylLex but not CD24 did not show P-selectin-mediated lung arrest. The sialylLex epitope is abundantly expressed on human carcinomas, and significant correlations between sialylLex expression and clinical prognosis exist. Our data suggest an important role for sialylLex-modified CD24 in the lung colonization of human tumors.
Publication types
MeSH terms
Substances
LinkOut - more resources
Other Literature Sources
Medical