Escherichia coli RNA polymerase core and holoenzyme structures
- PMID: 11118218
- PMCID: PMC305883
- DOI: 10.1093/emboj/19.24.6833
Escherichia coli RNA polymerase core and holoenzyme structures
Abstract
Multisubunit RNA polymerase is an essential enzyme for regulated gene expression. Here we report two Escherichia coli RNA polymerase structures: an 11.0 A structure of the core RNA polymerase and a 9.5 A structure of the sigma(70) holoenzyme. Both structures were obtained by cryo-electron microscopy and angular reconstitution. Core RNA polymerase exists in an open conformation. Extensive conformational changes occur between the core and the holoenzyme forms of the RNA polymerase, which are largely associated with movements in ss'. All common RNA polymerase subunits (alpha(2), ss, ss') could be localized in both structures, thus suggesting the position of sigma(70) in the holoenzyme.
Figures








Similar articles
-
Structural basis of transcription activation.Science. 2016 Jun 10;352(6291):1330-3. doi: 10.1126/science.aaf4417. Science. 2016. PMID: 27284196 Free PMC article.
-
Scanning force microscopy of Escherichia coli RNA polymerase.sigma54 holoenzyme complexes with DNA in buffer and in air.J Mol Biol. 1998 Nov 6;283(4):821-36. doi: 10.1006/jmbi.1998.2131. J Mol Biol. 1998. PMID: 9790843
-
Escherichia coli RNA polymerase holoenzyme: rapid reconstitution from recombinant alpha, beta, beta', and sigma subunits.Methods Enzymol. 1996;273:130-4. doi: 10.1016/s0076-6879(96)73012-4. Methods Enzymol. 1996. PMID: 8791605 Review. No abstract available.
-
Structural basis of transcription initiation: an RNA polymerase holoenzyme-DNA complex.Science. 2002 May 17;296(5571):1285-90. doi: 10.1126/science.1069595. Science. 2002. PMID: 12016307
-
Bacterial RNA polymerases: the wholo story.Curr Opin Struct Biol. 2003 Feb;13(1):31-9. doi: 10.1016/s0959-440x(02)00005-2. Curr Opin Struct Biol. 2003. PMID: 12581657 Review.
Cited by
-
Structural basis of archaeal RNA polymerase transcription elongation and Spt4/5 recruitment.Nucleic Acids Res. 2024 Jun 10;52(10):6017-6035. doi: 10.1093/nar/gkae282. Nucleic Acids Res. 2024. PMID: 38709902 Free PMC article.
-
Thermal probing of E. coli RNA polymerase off-pathway mechanisms.J Mol Biol. 2008 Oct 10;382(3):628-37. doi: 10.1016/j.jmb.2008.06.079. Epub 2008 Jul 3. J Mol Biol. 2008. PMID: 18647607 Free PMC article.
-
Sigma factors for cyanobacterial transcription.Gene Regul Syst Bio. 2009 Apr 22;3:65-87. doi: 10.4137/grsb.s2090. Gene Regul Syst Bio. 2009. PMID: 19838335 Free PMC article.
-
Structure of RNA polymerase bound to ribosomal 30S subunit.Elife. 2017 Oct 13;6:e28560. doi: 10.7554/eLife.28560. Elife. 2017. PMID: 29027901 Free PMC article.
-
Direct optical mapping of transcription factor binding sites on field-stretched λ-DNA in nanofluidic devices.Nucleic Acids Res. 2014 Jun;42(10):e85. doi: 10.1093/nar/gku254. Epub 2014 Apr 21. Nucleic Acids Res. 2014. PMID: 24753422 Free PMC article.
References
-
- Arthur T.M., Anthony,L.C. and Burgess,R.R. (2000) Mutational analysis of ‘β260–309’ a σ70 binding site located on E.coli core RNA polymerase. J. Biol. Chem., 275, 23113–23119. - PubMed
-
- Borukhov S. et al. (1991) Mapping of trypsin cleavage and antibody-binding sites and delineation of a dispensable domain in the β subunit of E.coli RNA polymerase. J. Biol. Chem., 266, 23921–23926. - PubMed
-
- Burgess R. and Jendrisak,J. (1975) A procedure for the rapid, large scale purification of E.coli DNA-dependent RNA polymerase involving polymin P precipitation and DNA–cellulose chromatography. Biochemistry, 14, 4634–4638. - PubMed
-
- Burgess R.R., Travers,A.A., Dunn,J.J. and Bautz,E.K.F. (1969) Factor stimulating transcription by RNA polymerase. Nature, 221, 43–44. - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases