Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2000 Dec 20;279(2):354-7.
doi: 10.1006/bbrc.2000.3968.

KB-R7943 inhibits store-operated Ca(2+) entry in cultured neurons and astrocytes

Affiliations

KB-R7943 inhibits store-operated Ca(2+) entry in cultured neurons and astrocytes

N Arakawa et al. Biochem Biophys Res Commun. .

Abstract

We have studied cyclopiazonic acid (CPA)-sensitive store-operated Ca(2+) entry (SOCE) in cultured neurons and astrocytes and examined the effect of 2-[2-[4-(4-nitrobenzyloxy)phenyl]]isothiourea (KB-R7943), which is often used as a selective inhibitor of the Na(+)-Ca(2+) exchanger (NCX), on the SOCE. CPA increased transiently intracellular Ca(2+) concentration ([Ca(2+)](i)) followed by a sustained increase in [Ca(2+)](i) in neurons and astrocytes. The sustained increase in [Ca(2+)](i) depended on the presence of extracellular Ca(2+) and inhibited by SOCE inhibitors, but not by a Ca(2+) channel inhibitor. CPA also caused quenching of fura-2 fluorescence when the cells were incubated in Mn(2+)-containing medium. KB-R7943 at 10 microM inhibited significantly CPA-induced sustained increase in [Ca(2+)](i) in neurons and astrocytes. KB-R7943 also inhibited CPA-induced quenching of fura-2 fluorescence in the presence of extracellular Mn(2+). These results indicate that cultured neurons and astrocytes possess SOCE and that KB-R7943 inhibits not only NCX but also SOCE.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources