Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2001 Apr 6;276(14):11126-34.
doi: 10.1074/jbc.M004604200. Epub 2000 Dec 15.

Mechanism of human group V phospholipase A2 (PLA2)-induced leukotriene biosynthesis in human neutrophils. A potential role of heparan sulfate binding in PLA2 internalization and degradation

Affiliations
Free article

Mechanism of human group V phospholipase A2 (PLA2)-induced leukotriene biosynthesis in human neutrophils. A potential role of heparan sulfate binding in PLA2 internalization and degradation

K P Kim et al. J Biol Chem. .
Free article

Abstract

Human group V phospholipase A(2) (hVPLA(2)) has been shown to have high activity to elicit leukotriene production in human neutrophils (Han, S. K., Kim, K. P., Koduri, R., Bittova, L., Munoz, N. M., Leff, A. R., Wilton, D. C., Gelb, M. H., and Cho, W. (1999) J. Biol. Chem. 274, 11881-11888). To determine the mechanism by which hVPLA(2) interacts with cell membranes to induce leukotriene formation, we mutated surface cationic residues and a catalytic residue of hVPLA(2) and measured the interactions of mutants with model membranes, immobilized heparin, and human neutrophils. These studies showed that cationic residues, Lys(7), Lys(11), and Arg(34), constitute a part of the interfacial binding surface of hVPLA(2), which accounts for its moderate preference for anionic membranes. Additionally, hVPLA(2) binds heparin with high affinity and has a well defined heparin-binding site. The site is composed of Arg(100), Lys(101), Lys(107), Arg(108), and Arg(111), and is spatially distinct from its interfacial binding surface. Importantly, the activities of the mutants to hydrolyze cell membrane phospholipids and induce leukotriene biosynthesis, when enzymes were added exogenously to neutrophils, correlated with their activities on phosphatidylcholine membranes but not with their affinities for anionic membranes and heparin. These results indicate that hVPLA(2) acts directly on the outer plasma membranes of neutrophils to release fatty acids and lysophospholipids. Further studies suggest that products of hVPLA(2) hydrolysis trigger the cellular leukotriene production by activating cellular enzymes involved in leukotriene formation. Finally, the temporal and spatial resolution of exogenously added hVPLA(2) and mutants suggests that binding to cell surface heparan sulfate proteoglycans is important for the internalization and clearance of cell surface-bound hVPLA(2).

PubMed Disclaimer

Publication types

LinkOut - more resources