Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2000 Dec 15;165(12):6889-95.
doi: 10.4049/jimmunol.165.12.6889.

CpG DNA induces maturation of dendritic cells with distinct effects on nascent and recycling MHC-II antigen-processing mechanisms

Affiliations

CpG DNA induces maturation of dendritic cells with distinct effects on nascent and recycling MHC-II antigen-processing mechanisms

D Askew et al. J Immunol. .

Abstract

Murine bone marrow cultured with GM-CSF produced dendritic cells (DCs) expressing MHC class II (MHC-II) but little CD40, CD80, or CD86. Oligodeoxynucleotides (ODN) containing CpG motifs enhanced DC maturation, increased MHC-II expression, and induced high levels of CD40, CD80, and CD86. When added with Ag to DCs for 24 h, CpG ODN enhanced Ag processing, and the half-life of peptide:MHC-II complexes was increased. However, Ag processing was only transiently enhanced, and exposure of DCs to CpG ODN for 48 h blocked processing of hen egg lysozyme (HEL) to HEL(48-61):I-A(k) complexes. Processing of this epitope required newly synthesized MHC-II and was blocked by brefeldin A (BFA), suggesting that reduced MHC-II synthesis could explain decreased processing. Real-time quantitative PCR confirmed that CpG ODN decreased I-A(beta)(k) mRNA in DCs. In contrast, RNase(42-56):I-A(k) complexes were generated via a different processing mechanism that involved recycling MHC-II and was partially resistant to BFA. Processing of RNase(42-56):I-A(k) persisted, although at reduced levels, after CpG-induced maturation of DCs, and this residual processing by mature DCs was completely resistant to BFA. Changes in endocytosis, which was transiently enhanced and subsequently suppressed by CpG ODN, may affect Ag processing by both nascent and recycling MHC-II mechanisms. In summary, CpG ODN induce DC maturation, transiently increase Ag processing, and increase the half-life of peptide-MHC-II complexes to sustain subsequent presentation. Processing mechanisms that require nascent MHC-II are subsequently lost, but those that use recycling MHC-II persist even in fully mature DCs.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources