Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2001 Mar 23;276(12):8740-5.
doi: 10.1074/jbc.M008359200. Epub 2000 Dec 19.

Tissue transglutaminase facilitates the polymerization of insulin-like growth factor-binding protein-1 (IGFBP-1) and leads to loss of IGFBP-1's ability to inhibit insulin-like growth factor-I-stimulated protein synthesis

Affiliations
Free article

Tissue transglutaminase facilitates the polymerization of insulin-like growth factor-binding protein-1 (IGFBP-1) and leads to loss of IGFBP-1's ability to inhibit insulin-like growth factor-I-stimulated protein synthesis

K Sakai et al. J Biol Chem. .
Free article

Abstract

Insulin-like growth factor-binding protein-1 (IGFBP-1) binds to insulin-like growth factors (IGFs) and has been shown to inhibit or stimulate cellular responses to IGF-I in vitro. This capacity of IGFBP-1 to inhibit or stimulate IGF-I actions correlates with its ability to form stable high molecular weight multimers. Since the ability of some proteins to polymerize is dependent upon transglutamination, we determined if tissue transglutaminase could catalyze this reaction and the effect of polymerization of IGFBP-1 upon IGF-I action. Following incubation with pure tissue transglutaminase (Tg), IGFBP-1 formed covalently linked multimers that were stable during SDS-polyacrylamide gel electrophoresis using reducing conditions. Dephosphorylated IGFBP-1 polymerized more rapidly and to a greater extent compared with native (phosphorylated) IGFBP-1. Exposure to IGF-I stimulated transglutamination of IGFBP-1 in vitro. An IGFBP-1 mutant in which Gln(66)-Gln(67) had been altered to Ala(66)-Ala(67) (Q66A/Q67A) was relatively resistant to polymerization by Tg compared with native IGFBP-1. Tg localized in fibroblast membranes was also shown to catalyze the formation of native IGFBP-1 multimers, however, Q66A/Q67A IGFBP-1 failed to polymerize. Although the mutant IGFBP-1 potently inhibited IGF-I stimulated protein synthesis in pSMC cultures, the same concentration of native IGFBP-1 had no inhibitory effect. The addition of higher concentrations of native IGFBP-1 did inhibit the protein synthesis response, and this degree of inhibition correlated with the amount of monomeric IGFBP-1 that was present. In conclusion, IGFBP-1 is a substrate for tissue transglutaminase and Tg leads to the formation of high molecular weight covalently linked multimers. Polymerization is an important post-translational modification of IGFBP-1 that regulates cellular responses to IGF-I.

PubMed Disclaimer

Publication types

MeSH terms

Substances

LinkOut - more resources