Signal transduction cascades regulating pseudohyphal differentiation of Saccharomyces cerevisiae
- PMID: 11121775
- DOI: 10.1016/s1369-5274(00)00142-9
Signal transduction cascades regulating pseudohyphal differentiation of Saccharomyces cerevisiae
Abstract
In response to nitrogen limitation, diploid cells of the yeast Saccharomyces cerevisiae undergo a dimorphic transition to filamentous pseudohyphal growth. At least two signaling pathways regulate filamentation. One involves components of the MAP kinase cascade that also regulates mating of haploid cells. The second involves a nutrient-sensing G-protein-coupled receptor that signals via an unusual G(alpha) protein, cAMP and protein kinase A. Recent studies reveal crosstalk between these pathways during pseudohyphal growth. Related MAP kinase and cAMP pathways regulate filamentation and virulence of human and plant fungal pathogens, and represent novel targets for antifungal drug design.
Similar articles
-
Cyclic AMP-dependent protein kinase regulates pseudohyphal differentiation in Saccharomyces cerevisiae.Mol Cell Biol. 1999 Jul;19(7):4874-87. doi: 10.1128/MCB.19.7.4874. Mol Cell Biol. 1999. PMID: 10373537 Free PMC article.
-
The G protein-coupled receptor gpr1 is a nutrient sensor that regulates pseudohyphal differentiation in Saccharomyces cerevisiae.Genetics. 2000 Feb;154(2):609-22. doi: 10.1093/genetics/154.2.609. Genetics. 2000. PMID: 10655215 Free PMC article.
-
Cyclic AMP-protein kinase A and Snf1 signaling mechanisms underlie the superior potency of sucrose for induction of filamentation in Saccharomyces cerevisiae.Eukaryot Cell. 2008 Feb;7(2):286-93. doi: 10.1128/EC.00276-07. Epub 2007 Sep 21. Eukaryot Cell. 2008. PMID: 17890371 Free PMC article.
-
Signal transduction cascades regulating fungal development and virulence.Microbiol Mol Biol Rev. 2000 Dec;64(4):746-85. doi: 10.1128/MMBR.64.4.746-785.2000. Microbiol Mol Biol Rev. 2000. PMID: 11104818 Free PMC article. Review.
-
Conserved cAMP signaling cascades regulate fungal development and virulence.FEMS Microbiol Rev. 2001 May;25(3):349-64. doi: 10.1111/j.1574-6976.2001.tb00582.x. FEMS Microbiol Rev. 2001. PMID: 11348689 Review.
Cited by
-
Target hub proteins serve as master regulators of development in yeast.Genes Dev. 2006 Feb 15;20(4):435-48. doi: 10.1101/gad.1389306. Epub 2006 Jan 31. Genes Dev. 2006. PMID: 16449570 Free PMC article.
-
Role of Cdc42-Cla4 interaction in the pheromone response of Saccharomyces cerevisiae.Eukaryot Cell. 2007 Feb;6(2):317-27. doi: 10.1128/EC.00102-06. Epub 2006 Dec 22. Eukaryot Cell. 2007. PMID: 17189484 Free PMC article.
-
Spatiotemporal control of pathway sensors and cross-pathway feedback regulate a differentiation MAPK pathway in yeast.J Cell Sci. 2021 Aug 1;134(15):jcs258341. doi: 10.1242/jcs.258341. Epub 2021 Aug 4. J Cell Sci. 2021. PMID: 34347092 Free PMC article.
-
Nuclear relocation of Kss1 contributes to the specificity of the mating response.Sci Rep. 2017 Mar 6;7:43636. doi: 10.1038/srep43636. Sci Rep. 2017. PMID: 28262771 Free PMC article.
-
Spatial landmarks regulate a Cdc42-dependent MAPK pathway to control differentiation and the response to positional compromise.Proc Natl Acad Sci U S A. 2016 Apr 5;113(14):E2019-28. doi: 10.1073/pnas.1522679113. Epub 2016 Mar 21. Proc Natl Acad Sci U S A. 2016. PMID: 27001830 Free PMC article.
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases