Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2000 Dec;111(3):879-89.

Oxygen tension influences the differentiation, maturation and apoptosis of human megakaryocytes

Affiliations
  • PMID: 11122151

Oxygen tension influences the differentiation, maturation and apoptosis of human megakaryocytes

S S Mostafa et al. Br J Haematol. 2000 Dec.

Abstract

Megakaryocytes (Mks) mature adjacent to bone marrow (BM) sinus walls and subsequently release platelets within the sinusoidal space or in lung capillaries. As the sites for platelet release have higher levels of oxygen tension (pO(2)) than the core of the BM where stem and progenitor cells reside, we investigated whether pO(2) influences Mk maturation. Mks were generated from CD34(+) cells (from mobilized peripheral blood from cancer patients) under 5% and 20% O(2). At day 15, CD41(+) Mk expansion in 20% and 5% O(2) cultures was 85-fold and 31-fold respectively. Twenty percent O(2) cultures also had higher levels of high ploidy (> or = 8N, eightfold higher) and proplatelet-forming (fivefold higher) Mks. At day 21, 20% O(2) cultures had a fivefold higher number of apoptotic Mks. In contrast, 5% O(2) promoted Mk colony-forming unit (CFU-Mk) generation and maintenance. Similar results were observed in cultures initiated with CD41(+) Mks, indicating that pO(2) directly affects Mks. The change from 20% to 5% O(2) on day 5 and day 7 delayed both maturation and apoptosis, suggesting that these two processes are closely linked. These results were confirmed in CD34(+) cultures from normal BM samples. These data may provide insights into in vivo Mk maturation, such as an explanation for hypoxia-induced thrombocytopenia in animals.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources