Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2000 Dec;30(12):1066-75.
doi: 10.1046/j.1365-2362.2000.00766.x.

Water and sodium balances and their relation to body mass changes in microgravity

Affiliations
Comparative Study

Water and sodium balances and their relation to body mass changes in microgravity

C Drummer et al. Eur J Clin Invest. 2000 Dec.

Abstract

Background: Since the very beginning of space physiology research, the deficit in body mass that is often observed after landing has always been interpreted as an indication of the absolute fluid loss early during space missions. However, in contrast to central hypervolemic conditions on Earth, the acute shift of blood volume from the legs to the upper part of the body in astronauts entering microgravity (microG) has neither stimulated diuresis and natriuresis nor resulted in negative water-and sodium-balances.

Design: We therefore examined the kinetics of body mass changes in astronauts (n = 3) during their several weeks aboard the space station MIR. A continuous diet monitoring was performed during the first mission (EuroMIR94, 30 days). The second mission (MIR97, 19 days) comprised a 15-day metabolic ward period (including predefined constant energy and sodium intake). Water and sodium balances were calculated and the kinetic of changes in basal concentrations of fluid-balance-related hormones during flight were determined.

Conclusion: The data suggest firstly that loss of body mass during space flight is rather a consequence of hypocaloric nutrition. Secondly, microG provokes a sodium retaining hormonal status and may lead to sodium storage without an accompanying fluid retention.

PubMed Disclaimer

Comment in

Publication types