Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2000;41(4):187-96.
doi: 10.1093/ilar.41.4.187.

Mechanisms of cryoinjury in living cells

Affiliations
Review

Mechanisms of cryoinjury in living cells

D Gao et al. ILAR J. 2000.

Abstract

Biological metabolism in living cells dramatically diminishes at low temperatures, a fact that permits the long-term preservation of living cells and tissues for either scientific research or many medical and industrial applications (e.g., blood transfusion, bone marrow transplantation, artificial insemination, in vitro fertilization, food storage). However, there is an apparent contradiction between the concept of preservation and experimental findings that living cells can be damaged by the cryopreservation process itself. The challenge to cells during freezing is not their ability to endure storage at very low temperatures (less than -180 degrees C); rather, it is the lethality of an intermediate zone of temperature (-15 to -60 degrees C) that a cell must traverse twice--once during cooling and once during warming. Cryobiological research studies the underlying physical and biological factors affecting survival of cells at low temperatures (during the cooling and warming processes). These factors and mechanisms (or hypotheses) of cryoinjury and its prevention are reviewed and discussed, including the most famous two-factor hypothesis theory of Peter Mazur, concepts of cold shock, vitrification, cryoprotective agens (CPAs), lethal intracellular ice formation, osmotic injury during the addition/removal of CPAs and during the cooling/warming process, as well as modeling/methods in the cryobiological research.

PubMed Disclaimer

Publication types

Substances

LinkOut - more resources