Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2000 Dec 15;20(24):RC116.
doi: 10.1523/JNEUROSCI.20-24-j0002.2000.

Expression and localization of prestin and the sugar transporter GLUT-5 during development of electromotility in cochlear outer hair cells

Affiliations

Expression and localization of prestin and the sugar transporter GLUT-5 during development of electromotility in cochlear outer hair cells

I A Belyantseva et al. J Neurosci. .

Abstract

Electromotility, i.e., the ability of cochlear outer hair cells (OHCs) to contract and elongate at acoustic frequencies, is presumed to depend on the voltage-driven conformational changes of "motor" proteins present in the OHC lateral plasma membrane. Recently, two membrane proteins have been proposed as candidates for the OHC motor. A sugar transporter, GLUT-5, was proposed based on its localization in the OHCs and on the observation that sugar transport alters the voltage sensitivity of the OHC motor mechanism. Another candidate, "prestin," was identified from a subtracted OHC cDNA library and shown to impart voltage-driven shape changes to transfected cultured cells. We used antibodies specific for these two proteins to show that they are highly expressed in the lateral membrane of OHCs. We also compared the postnatal expression patterns of these proteins with the development of electromotility in OHCs of the apical turn of the rat organ of Corti. The patch-clamp recording of transient charge movement associated with electromotility indicates that half of the maximal expression of the motor protein occurs at postnatal day 9. Prestin incorporation in the plasma membrane begins from postnatal day 0 and increases progressively in a time course coinciding with that of electromotility. GLUT-5 is not incorporated into the lateral plasma membrane of apical OHCs until postnatal day 15. Our results suggest that, although GLUT-5 may be involved in the control of electromotility, prestin is likely to be a fundamental component of the OHC membrane motor mechanism.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources