Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2001 Jan;59(1):1-8.

Identification of rat H3 receptor isoforms with different brain expression and signaling properties

Affiliations
  • PMID: 11125017

Identification of rat H3 receptor isoforms with different brain expression and signaling properties

G Drutel et al. Mol Pharmacol. 2001 Jan.

Abstract

We identified the cDNAs of three functional rat H3 receptor isoforms (H3A, H3B, and H3C) and one nonfunctional truncated H3 receptor (H3T). The H3A, H3B, and H3C receptor isoforms vary in the length of their third intracellular loop; the H3B and H3C receptor lack 32 and 48 amino acids, respectively. Transient expression of the H3A, H3B, and H3C receptors in COS-7 cells results in high affinity binding for the H3 antagonist [125I]iodophenpropit, which is displaced by selective H3 agonists and antagonists. The three isoforms differentially couple to the Gi protein-dependent inhibition of adenylate cyclase or stimulation of p44/p42 mitogen activated protein kinase (MAPK), a new signaling pathway for the H3 receptor. Whereas the H3A receptor was less effective in inhibiting forskolin-induced cAMP production compared with the H3B or H3C receptor, this isoform was more effective in the stimulation of p44/p42 MAPK. The H3 receptor isoforms also displayed differential CNS expression in key areas involved in regulation of sensory, endocrine, and cognitive functions. A differential H3 receptor isoform expression was seen in, for example, hippocampus, where a characteristic dorsoventral distribution was revealed. Differential H3 receptor expression was also characteristic for the cerebellum, indicating possible histaminergic regulation of motor functions. The identification of these new H3 receptor isoforms and their specific signaling properties adds a new level of complexity to our understanding of the role of histamine, and the H3 receptor in brain function. The heterogeneous distribution of the isoforms suggests that H3 receptor isoform-specific regulation is important in several brain functions.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources